D. CLASS A/CLASS B ZONE INSTALLATION (INITIATING ZONE MODULES)

Each Initiating Zone Module provides up to 2 class A (style D), 4 class B (style B) or 1 class A and 2 class B zones of protection. This module accommodates both 2 and 4 -wire smoke detectors, N.O. alarm initiating devices and N.O. or N.C. supervisory devices. Use any UL Listed N.O. or N.C. device not requiring power from the Fire Control Panel such as pull stations, heat detectors, waterflow switches, etc. Use only those 2 and 4wire smoke detectors which are listed in Table 2 in section II.C 'Summary Of Specifications'. Each zone provides enough current $(2 \mathrm{~mA})$ to power up to 16 of the 2 -wire detectors listed in that section. Before proceeding, position the module jumpers for the desired zone configuration as shown in Figure 4.

IMPORTANT!: N.C. supervisory devices are not permitted for NFPA71-central station installations, but are permitted for NFPA 72A-local installations.

Insert the first module into slot 2 of the main board and connect the ribbon cable to the connector shown on the Summary of Connections Diagram (Figures 8, 9). Wire connections from initiating devices to this module are made on the main terminal block.if used, the second module plugs into slot 3, with its ribbon cable plugged into the Auxiliary Terminal Block Board as shown in the Summary of Connections Diagram. Wire connections to the second module are made to the Auxiliary Terminal Block Board.

When wiring initiating devices, be sure that the maximum zone wire run resistance does not exceed 100 ohms for both the MS4812 and the MS4824. Observe polarity when wiring 2-wire smoke detectors. Be sure that only 2 and 4wire smoke detectors are wired to zones that will be programmed for alarm verification (other devices may not be programmed for alarm verification).

FIGURE 4. ZONE CONFIGURATIONS FOR INITIATING ZONE MODULES (Previous Page)*

E. ADDRESSABLE SENSOR INSTALLATION (POLLING LOOP MODULES)

The Polling Loop module provides a supervised polling loop output for connection to addressable sensors. The polling loop provides power to sensors and serves as a communication path between the control panel and sensors. Each sensor is assigned a unique address ID number, set by an 8 position DIP switch, which is displayed at the keypad console when annunciating the sensor's status.

Each Polling Loop module 'provides up to 55 mA of current for sensors. Fill out the polling loop loading worksheet (Table 3) to determine the maximum number of sensors that can be connected to a single loop. A second module can be installed, which provides a second 55 mA polling loop output, if additional sensors are required. Note that the maximum number of sensors supported by the system is 88 . Do not connect one polling loop output to the other polling loop output if two modules are used.

The first Polling Loop module is installed in slot 2 of the main board, and its ribbon cable plugs into the connector on the main terminal block as shown in the Summary of Connections Diagram. The second module (if used) is installed in slot 3 of the main board with its ribbon cable connected to the connector on the Auxiliary Terminal Block Board as shown in the Summary of Connections diagram.

Before installing sensors, be sure to assign unique ID numbers (from 9-96) using each sensor's DIP switch. Do not assign the same number to more than one sensor. Refer to Table 4 in this section when setting DIP switches. Wire sensors to the polling loop as shown in Figure 5. Observe the wire run length limitations listed in section II.C Polling Loop module specifications. Sensors can be connected to a single wire run or groups of sensors can be connected to separate wire runs without affecting the Fire Control Panel's ability to supervise individual sensors. Be sure to observe sensor polarity when wiring.

CAUTION! Use of shielded wire or conduit reduces the maximum combined wire run length for multiple wire runs (f rom one Polling Loop Module) f rom 4000 f eet (1200 m) to 2000 feet (600 m), independent of wire gauge.

RIZ-1 Installation and Connection

When using the RIZ-1 module, be sure that the maximum wire run resistance does not exceed 100 ohms. Wire initiating devices to the RIZ-1 zone as shown in Figure 5. Be sure that only 4- wire smoke detectors are wired to the zone if the zone will be programmed for alarm verification. The RIZ-1 mounts to any standard double gang electrical box using the four screws supplied with the module.

When using SDID, SDID-T, or CPID smoke detectors, or the BGID pull station, follow the instructions included with these modules for proper installation.

TABLE 3. POLLING LOOP LOADING WORKSHEET

SENSOR/LOAD FACTOR	NUMBER INSTALLED	EFFECTIVE LOAD
SDID: 0.36 mA		
SDID-T: 0.36 mA		
BGID: 0.56 mA		
CPID: .0 .36 mA		$(55 \mathrm{~mA} \mathrm{max})$.
RIZ-1: 1.95 mA	$(88$ max. $)$	
TOTALS:		

For each addressable sensor type shown above, fill in the number of sensors to be installed, then calculate the Effective load by muftiplying the number of installed sensors by the the load factor listed. Add the numbers in each column. Verify that the total number of sensors installed does not exceed 88 and that the total load does not exceed 55 mA .

NOTE: Load Factor is defined as follows:
Load Factor $=($ standby current + alarm current $) X 1 / 2$
This load factor was chosen so that maximum polling loop current $(55 \mathrm{~mA})$ is drawn when $1 / 2$ of the installed sensors are in alarm states and $1 / 2$ are in standby state.

FIGURE 5. POLLING LOOP CONNECTIONS

TABLE 4. ADDRESSABLE SENSOR DIP SWITCH SETTING TABLE (Above)

TABLE 6. POWER SUPPLY LOADING WORKSHEET (Next)

Fill in the alarm and standby currents drawn from each output listed below. Add up the currents in both columns. Verify that the total alarm current does not exceed the maximum current limit (67 omA for MS4812; 585mA for MS4824). Use the total standby current to choose the battery capacity needed to achieve 24 hours of standby time.

SLOT/DEVICE	$\begin{aligned} & \text { MS4812 } \\ & \text { RATING } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MS4824 } \\ & \text { RATING } \end{aligned}$	STANDBY CURRENT(mA)		ALARM CURRENT (mA)	
$\begin{aligned} & \text { FDC-UL } \\ & \text { (Slot 1) } \end{aligned}$	15 mA standby 85 mA alarm	12mA standby 40 mA alarm				
IZ412 IZ424 DCID DCID24 (Slot2/Slot3)	36 mA standby 100 mA alarm 85mA standby 75 mA standby	36 mA standby 100 mA alarm 50mA standby 45 mA alarm	SLOT 2	SLOT 3	SLOT 2	SLO
RR12 (Slot 4)	60 mA standby 100 mA alarm	70 mA standby 100 mA alarm				
ATR (Slot 5)	40 mA standby 90 mA alarm	25 mA standy 50mA alarm				
ABM-12 ABM-24 (Slot 6)	3 mA standby 53 mA alarm	3 mA standby 33 mA alarm				
Remote Annunciator Output (RDA)	75 mA standby 140 mA alarm	45 mA standby 85 mA alarm				NOTE 2)
4-Wire Smoke Detector	See Ratings provided with Detectors					mA max.)
TOTALS			$\begin{aligned} & \text { MS4812= } \\ & \text { MS4824 } \end{aligned}$	0 mA max. 0 mA max.	$\begin{gathered} \text { MS4812 } \\ \text { MS4824 } \end{gathered}$	0 mA max. 5 mA max.

NOTE 1: The MS4812 rating represents the modulelperipheral current draw from a 12 V battery. The MS4824 rating represents the modulelperipheral current draw from the 24 V battery.

NOTE 2: Amaximumof2RDAmodulesmaybeconnectedtotheRemoteAnnunciatorpoweroutput. Thisoutputprovides 280 mA at 12 V . Each RDA draws 140 mA at 12 V in alarm.

TABLES 7A AND 7B. BATTERY CAPACITY SELECTION TABLES

Use the appropriate table shown below to determine the battery capacity required to provide 24 hours of standby time followed by 5 minutes of alarm time for the total standby current determined from the power supply loading table above.

TOTAL STANDBY CURRENT	BATTERY CAPACITY	MAKE AND MODEL NUMBER
UP TO 80 mA	6 AH	Yuasa NP6-12 (12V)
UP TO 100 mA	6.5 AH	Fire-Lite PS $1265(12 \mathrm{~V})$ UP TO 160 mA Fire-Lite PS 682 (6V) connect 2 in series*
UP TO 240mA	8 AH	Yuasa NP10-6 (6V) connect 2 in series*
UP TO 310mA	10 AH	Fire-Lite PS 1265 (12V) connect 2 in parallel*
UP TO MAX STANDBY CUR- RENT (420mA MAX.)	15 AH	Yuasa NP15-12 (12V)

TABLE 7A. MS4812 BATTERY SELECTION

* NOTE: Two pairs of battery cables are supplied. Splice one pair together to connect batteries in series. Use both pairs for connecting batteries in parallel.

TABLE 7B. MS4824 BATTERY SELECTION

TOTAL STANDBY CURRENT	BATTERY CAPACITY	MAKE AND MODEL NUMBER
Upto 36 mA	$4 \mathrm{AH}$	Yuasa NP4-12 (12V)
		Connect 2 in series*
Up to 120mA	6AH	Yuasa NP6-12 (12V)
		Connect 2 in series*
Up to 140 mA	6.5 AH	FireLite PS1265 (12V)
		Connect 2 in series*
Up to 200 mA	8AH	Yuasa NP8-6 (6V)
		Connect 4 in series*
Up to 285 mA	10AH	Yuasa NP10-6 (6V)
		Connect 4 in series*
Up to310mA	12 AH	Yuasa NP6-12 (12V) FireLite PS1265 (12V) See note below

NOTE: Use four batteries. Connect two sets of 2 batteries in series, then connect both sets in paratial Observe polarity.
*NOTE: Three pairs of battery cables are provided. Use the red and black cables to connect batteries to terminal block. Two pairs of redlblack cables are provided to allow batteries to be connected in parallel. Two white jumper cables are provided to connect batteries in series (splice a red and black cable together to connect four batteries in series)

V. TESTING THE SYSTEM

The system can execute the following tests: bell test, LED test, battery test, walk test and smoke detector test. The bell test activates both bell circuits for the purposes of conducting a fire drill. The LED test checks that all LEDs and all segments of the digital display are working properly. Upon completion of the LED test, the digital display will display the system ID numbers of all tests in progress. The battery test checks the status of the battery. The walk test is used to check the operation of alarm initiating devices. The smoke detector test allows testing of addressable smoke detectors from the KeypaJ/Console.

Bell Test

To execute a bell test, press the BELL TEST key. Depending upon operating option programming, both bell circuits will activate steadily or in march time. The TEST MODE LED will light. The TEST MODE LED remains on and the bell circuits remain activated until the BELL TEST key is pressed again.

LED Test

To execute an LED test, press the DISPLAY key to enter the Display mode. The DISPLAY MODE LED will light and all other LEDs will turn off. Then press the LED TEST key. All LEDs will light and the number ' 88 ' will appear in the digital display for 2 seconds. After 2 seconds, the digital display will display the ID numbers of tests which are in progress. Tests in progress are displayed using the following system ID numbers:
$50=$ battery test in progress
$51=$ walk test in progress
$52=$ bell test in progress

Press the END key to return to the Normal mode.

Battery Test

To activate the battery test, press DISPLAY key + \# key +50 . The Battery test function (code 50) allows a battery test to be manually activated. This test forces the system to operate from the battery for a 10 minute period. If the battery fails to maintain proper operating voltage at any time during the test, the test is aborted and the TROUBLE LED will light. The system normally performs an automatic battery test every 12 hours, beginning 15 minutes from power up.

Walk Test

To activate the Walk Test, press DISPLAY + \# + 51. The Walk Test (code 51) allows a service person to verify the operation of all zones and sensors which are programmed for alarm. When this mode is first activated, the external sounders will sound for 3 seconds and the communicator (if installed) will transmit a "Start of Walk Test' message. To perform the test, simulate an alarm condition at each zone or sensor. The external sounder will sound for half a second, every 2-5 seconds and the faulted zone or sensor address will be repeatedly flashed on the Control's display window, for as long as the alarm condition is present.

Smoke Detector Test

SDID/4192SD, SDID-T/4192SDT and CPID Smoke Detectors can be tested via the Console's keypad while in the Walk Test Mode by entering the address of the detector to be tested. The external sounders will sound briefly and the detector address will be displayed for 1 second, every 2-5 seconds. Each new address entered ends the test for the previous address. If an address that is an installed sensor, but is not the address of an addressable smoke detector, is entered, the system will remain at this location waiting to hear from the unit selected. To get past this erroneous entry, enter 99 and testing can be continued. To completely end the smoke detector test, re-enter the last smoke detector address tested. If an entered address has not been programmed, the keypad will beep 3 times. (This feature can also be used to verify that any polling loop sensor's address has been programmed, by entering the desired address. If the keypad does not beep 3 times, the address has been programmed.)

Note that alarm reports are NOT sent to the Central station while the walk test is activated. To terminate the walk test manually, re-enter $[*+\#+51]$. The walk test will also automatically terminate 30 minutes after the last time a key is pressed or a sensor is faulted. The communicator will transmit an 'End of Walk Test" message when the walk test mode is terminated, either manually or automatically.

TABLE 9: SUMMARY OF KEYPAD FUNCTIONS

FUNCTION Normal Mode	KEYS
To silence keypad buzzer	Press BUZZER SILENCE
To test external sounders	Press BELL TEST. (Press again to silence.)
To silence bells activated by alarm	Press BELL SILENCE
To reset the system	Press RESET
To disable a zone or addressable sensor	Press ZONE DISABLE (\#) + Zone or sensor ID number (enter again to restore a disable zone)
Display Mode	
To enter display mode	Press DISPLAY (*)
To display current alarms	Press DISPLAY (*) + ALARM (1)
To display current supervisory faults	Press DISPLAY (*) + SUPV. (2)
To display current sensor and system troubles	Press DISPLAY (*) + TROUBLE (3)
To display disabled zones	Press DISPLAY (*) + DISABLE (4)
To stop a scrolling display	Press STEP (6) (Repeated depression causes manual scrolling of ID numbers)
To return to scrolling display	$\begin{aligned} & \text { Press SCAN (5) } \\ & \text { (when in Display Mode) } \end{aligned}$
To test keypad console LEDs and display current tests in progress	Press (*) + LED TEST (7) (test last 2 seconds)
To diplay alarm history	Press DISPLAY ${ }^{*}$) + (\#) + 91
To display supervisory history	Press DISPLAY (*) $+(\#)+92$
To display trouble history	Press DISPLAY (*) $+(\#)+93$
To disable Main Bell Circuit	$\text { Press DISPLAY }(*)+(\#)+70$ (Re-enter to enable)

To disable Aux. Bell Circuit	Press DISPLAY (*) + (\#) + 71 (Re-enter to enable)
To disable Aux. Alarm Relay	Press DISPLAY (*) $+(\#)+72$ (Re-enter to enable)
To disable Aux. Trouble Relay	Press DISPLAY (*) + (\#) + 73 (Re-enter to enable)
To disable Reversing Relay	Press DISPLAY (*) + (\#) + 74 (Re-enter to enable)
To disable Digital Comm.	$\begin{aligned} & \text { Press DISPLAY }(*)+(\#)+75 \\ & \text { (Re-enter to enable) } \end{aligned}$
To activate battery test	Press DISPLAY (*) + (\#) + 50 (test lasts 10 minutes)
To activate walk test	Press DISPLAY $\left(^{*}\right)+(\#)+51$ (Re-enter to stop test)
To return to Normal Mode from Display Mode	Press END (9)
Programming Mode	
To enter Program Mode	Press DISPLAY $(*)+(\#)+10$
To program a data field	Press $(*)+$ Field Number $+[$ Data to be entered $]$
To display a previously programmed field	Press (\#) + Field Number (when in Program Mode)
To clear the program	Press (*) +90 (when in Program Mode)
To exit program mode with lockout	$\operatorname{Press}(*)+98$ (Re-entry to Program Mode is only within 30 seconds of power up.)
To exit program with lockout	Press (*) +99 (Re-enter Program Mode anytime)

NOTE. Once In DISPLAY mode and the DISPLAY LED Is lit, it Is not necessary to press the DISPLAY (.) keyagalntoonteradifterentDISPLAYmode. Simply press the appropriate key(s) for the display desired.

SPECIAL MESSAGES

FC: Field Code error, occurs while programming fields. Re-enter data
OC: Open Circuit. No communication If it appears on built-in console, check console's ribbon connector to
main terminal block. If h appears on RDA, check continuity of yellow data wire to RDA.

The following codes may appear while displaying trouble conditions and represent system troubles:

A0 Polling loop short
Al Future use

A2 Future Use

A3 Main Bell Circuit faulted
A4 Aux. Bell Circuit faulted

A5 Ground fault

A6 Telco Line I faulted

A7 Telco Line 2 faulted

A8 'Low battery
A9 AC Loss

AA Kiss off failure

Ab External sounders silenced

The following codes may appear while displaying disables:

E0 -Main Bell circuit disabled
El - Auxiliary Bell circuit disabled
E2 = Auxiliary Alarm relay,disabled
E3 - Auxiliary Trouble Relay disabled
E4 - Reversing Relay disabled

E5 - Digital Communicator disabled

The following codes may appear while displaying tests In progress:
50 Battery Test
51 Walk Test

52 Bell Test

Figure 8: MS4812 Summary of Connections Diagram

FIELD FUNCTION

[56] SUPERVISORY RETARD TIME [57] BELL TIMEOUT PERIOD
[58] BELL AND RELAY OPTIONS For march time bell sounding, enter 0 in location 1

[59] REPORT ROUTING

Alarm reports=locations 1\&2
Non-Alarm reports=locations 3\&4

alrm prim	alrm 2nd	non prim	non 2nd	
				enter 1 if yes, 0 if no

[60] REPORT ROUTING AND OPTIONS
12 hour test report=0 in location 3

2nd bkup	prior order	24 hr rprt	test rprt	
				enter 1 if yes, 0 if no

[61] PRIMARY DIALER FORMAT [62] SECONDARY DIALER FORMAT Ademco Low Speed=0 in loc. $1,3 \& 4$ $3+1 / 4+1$ data format= 0 in location 2

Sescoa	$4+2$	high spd	Radionics	
				enter 1 if yes, 0 if no
				enter 1 if yes, 0 if no

[63] DIALER LINE OPTIONS
Rotary Service=0 in locatuions 1

T/T Ln 2	T/T Ln 1	Not Used	Comm. instll?	
				enter 1 if yes, 0 if no

[64] DIAL TONE WAIT, ACKNOWLEDGEMENTS
5 second wait=0 in locations $1 \& 2$ 30 second ack=0 in location 3 500 msec kissoff $=0$ in location 4

[65] EXPANDED REPORT OPTIONS Expanded Zone/Sensor reports=loc. 1-3 Expanded system reports=location 4

expd alrm	supv trble	expd dsble	expd systm	
				enter 1 if yes, 0 if no

[66] PABX ACCESS CODE
\{Enter up to four 2-digit numbers, 00-15 each \}
[67] PRIMARY SUBSCRIBER ACCOUNT NO.

DCID2	DCID3	IZM2	IZM3	
				enter 1 if in- stalled/0 if not

[71] FIRST TEST REPORT TIME DELAY

		X2 hours (00-15)

[72] SECONDARY SUBSCRIBER ACCT. NO. \{Enter up to four 2-digit numbers, 00-15\}

[73] FACTORY PROGRAMMED FIELD

Recore digits displayed, but DO NOT CHANGE ANY VALUES!

[74] OTHER REPORT FORMATS/ ROTARY BACKUP (see fields 61\&62)

Expr Prim	Expr 2nd	Sens ID	Rotary Bkup	
				enter 1 if yes, 0 if no

[75] COMMUNICATION OPTIONS
Enter 1 to select checksum/0 if no Enter 1 to disable dial tone detection/ 0 if detection is desired

Cksm Prim	Cksm 2nd	Dial detc	Not Used
			0

PROGRAMMING CHART FOR THE MS4812/MS4824 FIRE CONTROL PANEL FIELD FUNCTION

LOCATIONS

$\begin{array}{lllllllllll}\text { (enter } 1 \text { to select option, } 0 \text { if not desired) } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
[00] CLASS A SELECTION (zones only)
[01] MAIN BELL ACTIVATION
[02] AUX BELL ACTIVATION
[03] ALARM VERIFICATION
[04] WATERFLOW
[05] ALARM RELAY ACTIVATION
[06] DELAY REPORTING*
[07] SUPERVISORY SHORT
[08] SUPERVISORY OPEN
[09] SUPERVISORY RETARD
[10] REVERSING RELAY ACTIVATION

For home run wired zones, the location
 number corresponds to the programmable group number.

For polling loop sensors, the location number corresponds to the programmable group number.

Each programmable group responds to the listed option according to the entry made: $1=y$ yes $/ 0=$ no.
(Enter Group Number 1-7. Enter 0 if not installed)

IMPORTANT: Enter only zeros in all eight locatons of field 6.

	1ST DIGIT	2ND DIGIT	(Enter 00-15 for all locations)
[22] GROUP 1 ALARM CODE			
[23] GROUP 2 ALARM CODE			
[24] GROUP 3 ALARM CODE			
[25] GROUP 4 ALARM CODE			
[26] GROUP 5 ALARM CODE			
[27] GROUP 6 ALARM CODE			
[28] GROUP 7 ALARM CODE			
[29] GROUP 8 ALARM CODE			
[30] GROUP 1 ALARM RESTORE CODE			
[31] GROUP 2 ALARM RESTORE CODE			
[32] GROUP 3 ALARM RESTORE CODE			
[33] GROUP 4 ALARM RESTORE CODE			
[34] GROUP 5 ALARM RESTORE CODE			
[35] GROUP 6 ALARM RESTORE CODE			
[36] GROUP 7 ALARM RESTORE CODE			
[37] GROUP 8 ALARM RESTORE CODE			

[38] SYSTEM TROUBLE CODE
[39] SYSTEM TROUBLE RESTORE CODE
[40] LOW BATTERY CODE
[41] LOW BATTERY RESTORE CODE
[42] AC LOSS CODE
[43] AC RESTORE CODE
[44] SYSTEM DISABLE CODE
[45] SYSTEM DISABLE RESTORE CODE
[46] ZONE TROUBLE CODE
[47] ZONE TROUBLE RESTORE CODE [48] ZONE DISBALE CODE
[49] AONE DISABLE RESTORE CODE [50] WALK TEST START CODE
[51] WALK TEST END CODE
[52] SUPERVISORY CODE
[53] SUPERVISORY RESTORE CODE
[54] 12/24 HOUR TEST CODE

[55] NOT USED

Programming Key Components

To enter Programming Mode	Press [*] + [\#] + [10]
To Program a Data Field	Press [*] + [field number]
To Display Previous Data Field	Press [\#] + [field number]
To Clear Entire Program	Press [*] + [90]
To Exit with Lock-Out Option	Press [*] + [98]
To Exit without Lock-Out Option	Press [*] +[99]

Error Messages

$\mathrm{FC}=$ Field Code Error, reenter data
OC=Open Circuit, no communication to Console from the Control Panel
Alarm Codes
PABX/Telco Codes

Code	Enter	Code	Enter
$1-9$	$01-09$	$1-9$	$01-09$
0	10	0	00 or 10
B	11	$\#$	11
C	12		12
D	13		
E	15		
F			

To disable any report, enter 0000
Note that digits are programmed and displayed from left to right.

